ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
Gen Chen, Yanping Zhao, Yuzhou Mao, Shuai Yuan, Gaowei Zheng, Fen Zheng, Zhongxin He, Shenglin Yu
Fusion Science and Technology | Volume 61 | Number 4 | May 2012 | Pages 301-308
Technical Paper | doi.org/10.13182/FST61-301
Articles are hosted by Taylor and Francis Online.
Ion cyclotron range of frequency (ICRF) heating has been used in tokamaks as one of the most successful auxiliary heating tools and has been adopted in EAST. To ensure the steady operation of the ICRF heating system in EAST, the research and development of the fast ferrite tuner (FFT), which aimed to achieve real-time impedance matching of transmitter to antenna, has been carried out. The design and analysis of the FFT is an iterative process where multiple parameters have to be taken into account. The dimensions of the FFT should be chosen as a compromise between relative equivalent electrical length and high-power performance by using the finite element method and numerous computer simulations. The first prototype aimed at achieving a response time of milliseconds and operation with a peak power of 300 kW, which will inform us about the radio-frequency and the high-power performance of such a ferrite tuner. The bench test results have demonstrated that the FFT with a tuning speed of [approximately]200 ms is faster than the traditional methods, and it can be one of the candidates for the real-time impedance matching of the ICRF heating system in EAST. The high-power performance of the FFT should be tested in the EAST 2012 spring campaign. To be fit for the real-time impedance matching for ICRF heating experiments, development of a new prototype, which aims at a response time of 0.5 ms, an insertion loss of <1%, and operation with a peak power of 1.5 MW, is in progress.