ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Antonio Quercia, Raffaele Fresa, JET EFDA Contributors
Fusion Science and Technology | Volume 61 | Number 4 | May 2012 | Pages 257-274
Technical Paper | doi.org/10.13182/FST12-A13579
Articles are hosted by Taylor and Francis Online.
The paper reviews a set of magnetic probes that was installed in JET to improve the field measurements in the proximity of the iron and focuses in particular on one of them. The set consists of six limb probes, which are attached to the upper horizontal iron yokes, and one collar probe, which is inserted in the collar region of the iron structure. The probes include pickup coils, flux loops, Hall sensors, and a temperature sensor.The data provided by the system are regularly acquired and recorded within the set of JET Pulse Files. They can be used in studies implying measurement of the stray field due to the residual magnetization and for all the modeling activities involving three-dimensional studies, in particular resistive wall mode studies, more accurate modeling for the vertical stabilization, interactions between neutral beam injection and the magnetic field, and breakdown. In addition, the experience gained with Hall transducers is considered valuable in view of their potential use in ITER.Unlike the limb probes, the collar probe did not pass the functional commissioning because of an unexpected discrepancy between the signals from Hall sensors and pickup coils. The analysis illustrated in the paper shows that a critical assessment of the local configuration and a suitable magnetic modeling solve the issue of the observed discordance by putting it in relation with a local geometrical effect due to the peculiar shape of the ferromagnetic collar teeth.The improvement of magnetic models targeted to the prediction of signals produced by magnetic sensors is important, considering that a large number of magnetic probes in ITER will be located close to the ferromagnetic inserts.