ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Antonio Quercia, Raffaele Fresa, JET EFDA Contributors
Fusion Science and Technology | Volume 61 | Number 4 | May 2012 | Pages 257-274
Technical Paper | doi.org/10.13182/FST12-A13579
Articles are hosted by Taylor and Francis Online.
The paper reviews a set of magnetic probes that was installed in JET to improve the field measurements in the proximity of the iron and focuses in particular on one of them. The set consists of six limb probes, which are attached to the upper horizontal iron yokes, and one collar probe, which is inserted in the collar region of the iron structure. The probes include pickup coils, flux loops, Hall sensors, and a temperature sensor.The data provided by the system are regularly acquired and recorded within the set of JET Pulse Files. They can be used in studies implying measurement of the stray field due to the residual magnetization and for all the modeling activities involving three-dimensional studies, in particular resistive wall mode studies, more accurate modeling for the vertical stabilization, interactions between neutral beam injection and the magnetic field, and breakdown. In addition, the experience gained with Hall transducers is considered valuable in view of their potential use in ITER.Unlike the limb probes, the collar probe did not pass the functional commissioning because of an unexpected discrepancy between the signals from Hall sensors and pickup coils. The analysis illustrated in the paper shows that a critical assessment of the local configuration and a suitable magnetic modeling solve the issue of the observed discordance by putting it in relation with a local geometrical effect due to the peculiar shape of the ferromagnetic collar teeth.The improvement of magnetic models targeted to the prediction of signals produced by magnetic sensors is important, considering that a large number of magnetic probes in ITER will be located close to the ferromagnetic inserts.