ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Texas-based WCS chosen to manage U.S.-generated mercury
A five-year, $17.8 million contract has been awarded to Waste Control Specialists for the long-term management and storage of elemental mercury, the Department of Energy’s Office of Environmental Management announced on November 21.
F. L. Chong, J. L. Chen, X. B. Zheng
Fusion Science and Technology | Volume 61 | Number 3 | April 2012 | Pages 236-239
Technical Paper | doi.org/10.13182/FST11-350
Articles are hosted by Taylor and Francis Online.
Tungsten coating as a plasma-facing material on copper alloys is an important issue of a tokamak fusion device. Tungsten tile was created by means of plasma-spraying technology. The properties of the tungsten coating are as follows: low porosity of 4.7%, [approximately]92% of the theoretical tungsten bulk density, and high thermal conductivity of [approximately]79.7 W/mK, which are interesting properties for the plasma-facing material. To alleviate the stress concentration, the tile was designed with rounded edges with a radius of 5 mm. The fatigue performance of the tungsten tile was tested at 5 MW/m2 in an electron beam facility. No damage was observed after 38 cycles at 250 s per cycle. It is concluded that the rounded-edge design is helpful in reducing the maximum stress and in improving the resistant heat load property, which was proved by finite element analysis.