ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
Yuzhou Mao, Shuai Yuan, Yanping Zhao, Gen Chen, Lei Wang, Xu Deng, Diye Xue, Songqing Ju, Yan Cheng, R. Kumazawa, Shidong Wei
Fusion Science and Technology | Volume 61 | Number 3 | April 2012 | Pages 216-226
Technical Paper | doi.org/10.13182/FST61-216-226
Articles are hosted by Taylor and Francis Online.
High radio frequency (rf) power amplifiers were designed as a part of research and development of an ion cyclotron range of frequency (ICRF) system that aimed at long-pulse operation at the megawatt level in a frequency range of 25 to 70 MHz. A study on the high-power amplifiers for ICRF heating in Experimental Advanced Superconducting Tokamak (EAST) is presented. To realize the design with a compact structure, a double coaxial cavity was employed as the output circuit of the final power amplifier (FPA) for tuning and matching, and the strip line was adopted for the input impedance matching circuit of the drive power amplifier (DPA). A double-stub tuner matching network with a variable-length U-link was used to obtain the impedance matching between the DPA and the FPA. To ensure the stable operation of the amplifiers, a grounded-grid configuration was chosen, and precautions were taken to suppress all parasitic oscillations of the anode output circuit. The rf power amplifiers performed successfully in stable operation at the megawatt level at each integer frequency from 25 to 70 MHz during the tests, and a rf power of 1.5 MW was achieved in a matching dummy load. The test results show a good agreement with the calculated values. The amplifiers operated reliably in long-pulse mode in EAST, and the total rf power of [approximately]1.8 MW was injected into plasmas in EAST ICRF heating experiments in the 2010 autumn campaign.