ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Yasuhisa Oda, Ken Kajiwara, Koji Takahashi, Keishi Sakamoto
Fusion Science and Technology | Volume 61 | Number 3 | April 2012 | Pages 203-208
Technical Paper | doi.org/10.13182/FST12-A13532
Articles are hosted by Taylor and Francis Online.
In the radio-frequency (rf) power transmission system of an electron cyclotron heating and current drive (EC H&CD) system, the gyrotron power should couple with the fundamental mode of the corrugated waveguide (HE11 mode) because unwanted higher-order modes affect the beam radiation characteristics, which is a problem in the quasi-optical launcher design. To achieve high HE11 mode purity, a beam coupling method that measures the transmission mode in the waveguide was examined using a 170-GHz high-power gyrotron for the first time. In beam coupling, the offset and tilt angle of the input beam at the waveguide inlet were minimized by controlling the angles of the mirrors in the matching optical unit (MOU) to minimize unwanted LP11 modes in the waveguide. The rf field profile in free space after 1.3 m of the waveguide from the MOU was measured, and the transmission mode content was analyzed. According to the analyzed mode content, the HE11 mode content was optimized by remote adjustment of the mirror angles with a digital controller. The optimization procedure of beam coupling achieved 95% of HE11 mode purity at the entrance of transmission line, which is the first demonstration that meets the criteria of the ITER EC H&CD system.