ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Qiang Yin, Lin Zhang, Shuyang Zhang, Jiang Xiao, Wei Zhang, Lan Zhou, Fanghua Zhu
Fusion Science and Technology | Volume 61 | Number 3 | April 2012 | Pages 197-202
Technical Paper | doi.org/10.13182/FST12-A13531
Articles are hosted by Taylor and Francis Online.
Combination rippled-flat targets can be used to measure Rayleigh-Taylor (RT) or Richtmyer-Meshkov (RM) instability in inertial confinement fusion (ICF) experiments. To produce such targets, Br-doped polystyrene film with a sinusoidal pattern was fabricated, and the rippled film was combined with a foam by casting the foam solution onto the rippled film. Attempts at combining the target and the sinusoidal pattern are discussed. The morphology was characterized by optical microscopy and white-light interferometry. The rippled plastic-foam combinations were successfully fabricated using the mold technique. This paper discusses not only the production of the rippled plastic-foam combinations and the characterization of the sample morphology but also the film thicknesses.