ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
A. Krämer-Flecken
Fusion Science and Technology | Volume 61 | Number 2 | February 2012 | Pages 376-383
Diagnostics | Proceedings of the Tenth Carolus Magnus Summer School on Plasma and Fusion Energy Physics | doi.org/10.13182/FST12-A13524
Articles are hosted by Taylor and Francis Online.
The measurement of plasma quantities is a difficult task since the plasma cannot be treated like normal material. Any measurement of plasma quantities with solid probes will yield interactions with the plasma and causes a perturbation of the measured quantity. Inside a hot plasma those methods are not applicable, since they lead to a disruption of the discharge. In addition microwave diagnostics have no big needs in terms of space requirements if coupled to a plasma. Mirrors needed for the most optical diagnostics will become a problem due to erosion and deposition of the mirror surfaces in future fusion devices as ITER and DEMO. Also in this sense microwave diagnostics are less demanding. However, this puts some pressure on a future generation of scientist to develop new methods to replace optical based diagnostics by those using microwaves to probe the plasma.