ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
A. J. H. Donné
Fusion Science and Technology | Volume 61 | Number 2 | February 2012 | Pages 357-364
Diagnostics | Proceedings of the Tenth Carolus Magnus Summer School on Plasma and Fusion Energy Physics | doi.org/10.13182/FST12-A13522
Articles are hosted by Taylor and Francis Online.
The ITER environment imposes many challenges for the various diagnostic systems. At the one hand diagnostic functionalities are required that go well beyond those at present devices. This is because there is a need to actively control (the profiles of) multiple plasma parameters, implying that measurement systems should be accurate and reliable. At the other hand the application of diagnostics at ITER is strongly hampered by constraints arising from the relatively harsh environmental conditions that give rise to phenomena that are new to the diagnostic designs. The nuclear environment puts stringent demands on the engineering and robustness of diagnostics, while the long pulse lengths require high stability of all systems. This paper will present an overview of the diagnostics for ITER with an additional glance in the further future.