ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Oliver Schmitz
Fusion Science and Technology | Volume 61 | Number 2 | February 2012 | Pages 221-229
Edge Physics and Exhaust | Proceedings of the Tenth Carolus Magnus Summer School on Plasma and Fusion Energy Physics | doi.org/10.13182/FST12-A13509
Articles are hosted by Taylor and Francis Online.
Controlling the transport in the plasma edge of high temperature plasmas has recently been extended by a sophisticated option - the stochastization of the magnetic cage confining the plasma. The idea is to induce a chaotic magnetic field structure in the edge which can act as a magnetic valve to control heat and particle fluxes between the confined plasma and the plasma facing components. This tool is applied in both, stellarators as well as tokamaks. In this lecture an introduction into the topic will be given. The topics are (a) generation and structure of chaotic magnetic edge layers, (b) plasma transport with stochastic magnetic fields including the resulting three-dimensional plasma wall interaction and (c) impact of a plasma response. However, this field is matter of intense ongoing research and hence this lecture gives a systematic introduction into the challenges based on examples from the TEXTOR tokamak.