ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
U. Samm
Fusion Science and Technology | Volume 61 | Number 2 | February 2012 | Pages 193-198
Edge Physics and Exhaust | Proceedings of the Tenth Carolus Magnus Summer School on Plasma and Fusion Energy Physics | doi.org/10.13182/FST12-A13506
Articles are hosted by Taylor and Francis Online.
The control of wall loads in fusion devices, in particular with respect to the life time limitations of wall components due to material erosion and migration, will be decisive for the realisation of a fusion power plant operating in steady state, while in a pulsed experiment like ITER the primary goal for plasma-wall interaction is the achievement of a high availability. The article describes the grand challenges of plasma-wall interaction research along the needs for ITER and the strategies of ongoing research for further optimization of the design. Addressed are questions related to material limitations, erosion- and transport processes, tritium retention in deposited layers and transient heat loads.