ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
B. Weyssow
Fusion Science and Technology | Volume 61 | Number 2 | February 2012 | Pages 69-85
Basic and Kinetic Theory | Proceedings of the Tenth Carolus Magnus Summer School on Plasma and Fusion Energy Physics | doi.org/10.13182/FST12-A13494
Articles are hosted by Taylor and Francis Online.
Kinetic theory studies the macroscopic properties of large numbers of particles, starting from their (classical) equations of motion while the thermodynamics describes the equilibrium behavior of macroscopic objects in terms of concepts such as work, heat, and entropy. The phenomenological laws of thermodynamics tell us how these quantities are constrained as a system approaches its equilibrium. At the microscopic level, we know that these systems are composed of particles (atoms, particles), whose interactions and dynamics are reasonably well understood in terms of more fundamental theories. If these microscopic descriptions are complete, we should be able to account for the macroscopic behavior, i.e. derive the laws governing the macroscopic state functions in equilibrium. Kinetic theory attempts to achieve this objective. In particular, we shall try to answer the following questions:How can we define equilibrium for a system of moving particles?Do all systems naturally evolve towards an equilibrium state?What is the time evolution of a system that is not quite in equilibrium?