ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
Eric P. Robertson, Michael G. McKellar, Lee O. Nelson
Fusion Science and Technology | Volume 61 | Number 1 | January 2012 | Pages 452-457
Other Concepts and Assessments | Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems | doi.org/10.13182/FST12-A13462
Articles are hosted by Taylor and Francis Online.
This paper evaluates the integration of a high-temperature gas-cooled reactor (HTGR) to an in situ oil shale retort operation producing 7950 m3/D (50,000 bbl/day). The large amount of heat required to pyrolyze the oil shale and produce oil would typically be provided by combustion of fossil fuels, but can also be delivered by an HTGR. Two cases were considered: a base case which includes no nuclear integration, and an HTGR-integrated case.The HTGR was assumed to be physically located near the oil shale operation such that heat losses during surface transport of the heating fluid were negligible. Transferring the required retort heat for all three cases to the underground oil shale was modeled by a series of closed-loop pipes. The pipes ran from the surface to the desired subsurface zone where the majority of the heat was transferred to the oil shale; the cooled fluid was then returned to the heat source at the surface for reheating. The heat source was a natural gas fired boiler for the base case and was an HTGR for the HTGR-integrated case. The fluid and heat flows through the circulation systems were modeled using Hyprotech's HYSYS.PlantTM process modeling software.A mass and energy balance model was developed to evaluate oil production, gas production and usage, electricity generation and usage, heat requirements, and CO2 emissions for each case. Integrating an HTGR to an in situ oil shale retort operation appeared quite feasible and had some notable advantages over the base case. The HTGR-integrated case produced the same amount of refinery-ready oil, four times the amount of gas, 8% of the amount of CO2, and 70% of amount of electricity as the base case evaluated with retort heat coming from combustion of fossil fuels.