ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Qi Zhang, Keiichi N. Ishihara, Benjamin McLellan, Tetsuo Tezuka
Fusion Science and Technology | Volume 61 | Number 1 | January 2012 | Pages 423-427
Education, Economics, and Sustainability | Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems | doi.org/10.13182/FST12-A13457
Articles are hosted by Taylor and Francis Online.
The realization of a zero-carbon electricity system is of vital importance to a future zero-carbon energy system and society. Nuclear power is expected to contribute to the realization of a zero-carbon electricity system much more than intermittent, complicated and costly renewable energy in the future in Japan. Therefore, in the present study, nuclear power development for a future zero-carbon energy system was studied through scenario analysis. The study was conducted in three steps to (i) estimate future electricity demand and electrical load pattern by 2100; (ii) determine the contribution of nuclear power to the electricity generation based on various constraints; and (iii) test the feasibility of the nuclear-based electricity system in term of supply-demand balance. An integrated computer software platform was developed to conduct the analyses. The analysis results show that Fukushima Accident will not affect nuclear development in Japan greatly from a long term viewpoint. Compared with 2005, the total electricity demand will increase by 50% to 2100. Nuclear power contributes 60%-100% of total electricity production and its capacity factor needs to be enhanced from the present 60-70% to 80-90%. The nuclear power can be supplied from advanced LWR, FBR even fusion technology.