ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Qi Zhang, Keiichi N. Ishihara, Benjamin McLellan, Tetsuo Tezuka
Fusion Science and Technology | Volume 61 | Number 1 | January 2012 | Pages 423-427
Education, Economics, and Sustainability | Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems | doi.org/10.13182/FST12-A13457
Articles are hosted by Taylor and Francis Online.
The realization of a zero-carbon electricity system is of vital importance to a future zero-carbon energy system and society. Nuclear power is expected to contribute to the realization of a zero-carbon electricity system much more than intermittent, complicated and costly renewable energy in the future in Japan. Therefore, in the present study, nuclear power development for a future zero-carbon energy system was studied through scenario analysis. The study was conducted in three steps to (i) estimate future electricity demand and electrical load pattern by 2100; (ii) determine the contribution of nuclear power to the electricity generation based on various constraints; and (iii) test the feasibility of the nuclear-based electricity system in term of supply-demand balance. An integrated computer software platform was developed to conduct the analyses. The analysis results show that Fukushima Accident will not affect nuclear development in Japan greatly from a long term viewpoint. Compared with 2005, the total electricity demand will increase by 50% to 2100. Nuclear power contributes 60%-100% of total electricity production and its capacity factor needs to be enhanced from the present 60-70% to 80-90%. The nuclear power can be supplied from advanced LWR, FBR even fusion technology.