ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
Santiago Cuesta-Lopez, J. M. Perlado
Fusion Science and Technology | Volume 61 | Number 1 | January 2012 | Pages 385-390
Materials | Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems | doi.org/10.13182/FST12-A13450
Articles are hosted by Taylor and Francis Online.
We report non-equilibrium Molecular Dynamics simulations that provide a nanoscale view for the modeling of shock wave generation in any kind of material. Our methodology reported here is able to cover similar times and length scales as experiments. We are studying the propagation of shock waves, and their consequences: structural transformations and induced melting. We apply our methodology not only to single crystalline materials like Ta, W, but also in double layer conformations of bcc/fcc/bcc and bcc/bcc/bcc materials, with clear interest for Nuclear Fusion Technology. Preliminary results point that W and Ta behave more efficiently in terms of uniformity under shock propagation than lighter materials. Moreover, we show that shocks in double layer structures propagate and generate pressure more efficiently than common structures.