ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Santiago Cuesta-Lopez, J. M. Perlado
Fusion Science and Technology | Volume 61 | Number 1 | January 2012 | Pages 385-390
Materials | Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems | doi.org/10.13182/FST12-A13450
Articles are hosted by Taylor and Francis Online.
We report non-equilibrium Molecular Dynamics simulations that provide a nanoscale view for the modeling of shock wave generation in any kind of material. Our methodology reported here is able to cover similar times and length scales as experiments. We are studying the propagation of shock waves, and their consequences: structural transformations and induced melting. We apply our methodology not only to single crystalline materials like Ta, W, but also in double layer conformations of bcc/fcc/bcc and bcc/bcc/bcc materials, with clear interest for Nuclear Fusion Technology. Preliminary results point that W and Ta behave more efficiently in terms of uniformity under shock propagation than lighter materials. Moreover, we show that shocks in double layer structures propagate and generate pressure more efficiently than common structures.