ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
Santiago Cuesta-Lopez, J. M. Perlado
Fusion Science and Technology | Volume 61 | Number 1 | January 2012 | Pages 385-390
Materials | Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems | doi.org/10.13182/FST12-A13450
Articles are hosted by Taylor and Francis Online.
We report non-equilibrium Molecular Dynamics simulations that provide a nanoscale view for the modeling of shock wave generation in any kind of material. Our methodology reported here is able to cover similar times and length scales as experiments. We are studying the propagation of shock waves, and their consequences: structural transformations and induced melting. We apply our methodology not only to single crystalline materials like Ta, W, but also in double layer conformations of bcc/fcc/bcc and bcc/bcc/bcc materials, with clear interest for Nuclear Fusion Technology. Preliminary results point that W and Ta behave more efficiently in terms of uniformity under shock propagation than lighter materials. Moreover, we show that shocks in double layer structures propagate and generate pressure more efficiently than common structures.