ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Texas-based WCS chosen to manage U.S.-generated mercury
A five-year, $17.8 million contract has been awarded to Waste Control Specialists for the long-term management and storage of elemental mercury, the Department of Energy’s Office of Environmental Management announced on November 21.
Michael Rieth, Jens Reister, Bernhard Dafferner, Siegfried Baumgärtner
Fusion Science and Technology | Volume 61 | Number 1 | January 2012 | Pages 381-384
Materials | Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems | doi.org/10.13182/FST12-1T3
Articles are hosted by Taylor and Francis Online.
Many divertor design studies for future fusion reactors rely on helium gas cooling. In these concepts, pressurized tubes or channels had to be operated at maximum temperatures between 1000 °C and 1300 °C while the lowest operating temperature is preset by the coolant inlet or by specific start-up and maintenance conditions. At such extreme temperature regimes, the only reduced activation material that would provide enough strength, paired with the necessary heat conductivity, is tungsten. Therefore, various tungsten materials and alloys are often publicized as candidate material for structural divertor applications.However, there are also clear limitations. Therefore, an intensive study on the influence of microstructure and chemical composition on the fracture behavior of industrially produced tungsten materials has been perfomed. This paper reviews the results and some other relevant properties of tungsten materials with respect to possible applications for structural divertor parts. Drawbacks and possible alternatives are discussed.