ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Michael Rieth, Jens Reister, Bernhard Dafferner, Siegfried Baumgärtner
Fusion Science and Technology | Volume 61 | Number 1 | January 2012 | Pages 381-384
Materials | Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems | doi.org/10.13182/FST12-1T3
Articles are hosted by Taylor and Francis Online.
Many divertor design studies for future fusion reactors rely on helium gas cooling. In these concepts, pressurized tubes or channels had to be operated at maximum temperatures between 1000 °C and 1300 °C while the lowest operating temperature is preset by the coolant inlet or by specific start-up and maintenance conditions. At such extreme temperature regimes, the only reduced activation material that would provide enough strength, paired with the necessary heat conductivity, is tungsten. Therefore, various tungsten materials and alloys are often publicized as candidate material for structural divertor applications.However, there are also clear limitations. Therefore, an intensive study on the influence of microstructure and chemical composition on the fracture behavior of industrially produced tungsten materials has been perfomed. This paper reviews the results and some other relevant properties of tungsten materials with respect to possible applications for structural divertor parts. Drawbacks and possible alternatives are discussed.