ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
F. Cardoso, C. Pereira, M. A. F. Veloso, C. A. M. Silva, R. Cunha, A. L. Costa
Fusion Science and Technology | Volume 61 | Number 1 | January 2012 | Pages 338-342
Modeling and Simulations | Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems | doi.org/10.13182/FST12-A13442
Articles are hosted by Taylor and Francis Online.
Among the projects of IV generation reactors available nowadays, the (High Temperature Reactors) HTR, are highlighted due to their desirable characteristics and they have been studied by the Instituto Nacional de Ciências e Tecnologia de Reatores Inovadores/CNPq(Brazil). For this work, it evaluated the neutronic behavior and fuel composition during the burnup using the codes (Winfrith Improved Multi-Group Scheme) WIMSD5 and the MCNPX2.6, inserting different percentages of reprocessed fuel in the core. The fuel type “C” coming from Angra-I nuclear power plant, in Brazil, enriched with 3.1% was burnt by three typical cycles and then reprocessed. It recovered (Pu) and minor actinides (MA)being neptunium (Np), americium (Am), curium (Cm), and processed six different fuels varying percentage insertion of reprocessed fuel and enrichment uranium. It analyzed the multiplication factor, temperatures reactivity coefficients, and the composition during the burnup. The results showed, in the analyzed conditions, only one of these fuels is possible to be used. To compare, a reference fuel using 15% enrichment (235U) was too evaluated.