ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Sara Bortot, Carlo Artioli, Marco E. Ricotti
Fusion Science and Technology | Volume 61 | Number 1 | January 2012 | Pages 329-337
Modeling and Simulations | Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems | doi.org/10.13182/FST12-A13441
Articles are hosted by Taylor and Francis Online.
A preliminary feasibility study and scope analysis for a demonstrator (demo) of the SUstainable Proliferation-resistance Enhanced Refined Secure Transportable Autonomous Reactor (SUPERSTAR) has been performed. Preliminary core design studies have been carried out focused on maximizing the power level compatibly with natural circulation cooling and transportability requirements, while meeting the foremost goals of (i) providing energy security and proliferation resistance thanks to a long life core design, (ii) minimizing the reactivity swing over the fuel lifetime, and (iii) flattening the radial power profiles, as demanded by the choice of wrapper-less fuel assemblies and by the stringent technological constraints imposed by the short-time-to-deployment feature. Once established appropriate geometrical pin and fuel assembly specifications, a suitable active height allowing the system to be cooled by free-flowing lead has finally been set through parametric T/H analyses. Fuel cycle calculations have been then performed to optimize both the fresh fuel composition and the radial enrichment zoning. Moreover, the use of several absorbing materials has been investigated in order to guarantee enhanced safety by incorporating control elements having a net density greater than that of the surrounding lead coolant. A complete static neutronic characterization of the resulting core has been finally accomplished.