ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Texas-based WCS chosen to manage U.S.-generated mercury
A five-year, $17.8 million contract has been awarded to Waste Control Specialists for the long-term management and storage of elemental mercury, the Department of Energy’s Office of Environmental Management announced on November 21.
Bilge Ozgener
Fusion Science and Technology | Volume 61 | Number 1 | January 2012 | Pages 308-313
Modeling and Simulations | Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems | doi.org/10.13182/FST12-A13438
Articles are hosted by Taylor and Francis Online.
Discrete ordinates solutions of the neutron transport equation require the solution of the within-group transport equation by the method of iteration on the scattering source. Scattering source iterations are hampered by extremely slow convergence rates when the medium is highly scattering. Among the methods proposed for the acceleration of the scattering source iterations, the coarse mesh rebalance and the diffusion synthetic acceleration techniques appear to be the most prominent ones. Thus, one or the other has been adopted in most of the SN codes. The numerical studies concerning the effectiveness of these acceleration methods have been made mostly for the planar geometry. There are some studies also for the multidimensional Cartesian geometries. In this study we have tried to assess the merits of these acceleration techniques in a curvilinear coordinate system that is spherical geometry. The performance of both of the acceleration methods have been determined by varying the scattering to total cross section ratio, the mesh size, the degree of anisotropy in scattering for a uniform spherical system. Then the study is extended to multiregion systems some of which are diffusive and in some of which transport effects are important.