ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Sümer Sahin, Haci Mehmet Sahin, Adem Acir
Fusion Science and Technology | Volume 61 | Number 1 | January 2012 | Pages 250-255
Fusion-Fission Hybrids and Transmutation | Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems | doi.org/10.13182/FST12-A13428
Articles are hosted by Taylor and Francis Online.
Large quantities of weapon grade (WG) plutonium have been accumulated in the nuclear warheads. Plutonium and heavy water moderator can give a good combination with respect to neutron economy. TRISO type fuel can withstand very high fuel burn up levels. The paper investigates the prospects of utilization of TRISO fuel made of WG-plutonium in CANDU reactors. Three different fuel compositions have been investigated: 1: 90 % ThC + 10 % PuC, 2: 70 % ThC + 30 % PuC and 3: 50 % ThC + 50 % PuC. The temporal variation of the criticality k and the burn-up values of the reactor have been calculated by full power operation up to 17 years. Calculated startup criticalities for these fuel modes are k,0 = 1.6403, 1.7228, 1.7662, respectively. Attainable burn up values and reactor operation times with the same fuel charge will be 94 700, 265 000, 425 000 MW.D/MT and ~ 3.5, 10, 17 years, respectively. These high burn ups would reduce fuel fabrication costs and nuclear waste mass for final disposal per unit energy drastically.