ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
M. M. Günther, J. Schütrumpf, A. Britz, K. Vogt, K. Sonnabend, M. Roth
Fusion Science and Technology | Volume 61 | Number 1 | January 2012 | Pages 231-236
Fusion-Fission Hybrids and Transmutation | Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems | doi.org/10.13182/FST12-A13425
Articles are hosted by Taylor and Francis Online.
We present a novel nuclear activation-based method for the investigation of high-energy photons and electron dynamics within the laser-plasma interaction zone. This method is based on high density activation targets which are a pseudoalloy of several selected isotopes with different photo-neutron disintegration reaction thresholds. The gamma decay spectrum emitted by the activated target is used for the reconstruction of the bremsstrahlung spectrum generated by the electrons. This allows for the reconstruction of the spectrum of bremsstrahlung photons without any anticipated fit procedures. Furthermore, the characterization of the electrons in the interaction zone is accessible immediately.The consolidated findings about the interaction mechanisms could be used to realize, control and characterize laser driven particle generation, such as a pulsed neutron source for nuclear and material sciences using special target designs and materials in a pseudoalloic compound of isotopes. An additional application is the laser assisted nuclear transmutation to produce short-lived isotopes with activities suitable for medical diagnostics and therapy.