ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
Terry Kammash
Fusion Science and Technology | Volume 61 | Number 1 | January 2012 | Pages 227-230
Fusion-Fission Hybrids and Transmutation | Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems | doi.org/10.13182/FST12-A13424
Articles are hosted by Taylor and Francis Online.
A fusion-fission hybrid reactor whose fusion component is the gasdynamic mirror (GDM) is proposed for power production that could meet the world's energy needs of the next several decades. The choice of the GDM is based on the fact that it is linear, axisymmetric and can operate in steady state. Since the primary role of the fusion component is to supply neutrons to the blanket, it can operate at or near “breakeven” condition, a much less stringent condition than that required for a pure fusion reactor. A large aspect ratio GDM is desirable because of MHD stability considerations, and if we choose such a geometry then a cylindrically symmetric plasma with a surrounding blanket can be treated as semi-infinite cylinders, allowing for the reactor performance to be determined by two, one-dimensional equations: one describing the time evolution of the fissile material density bred in the fertile blanket, and another describing the diffusion of fast neutrons in that region. Our choice for the blanket material is thorium-232 in order to take advantage of the thorium fuel cycle that leads to the breeding of uranium-233. Such a fuel cycle is known to be resistant to proliferation and clandestine operations. We choose to operate the GDM at 0.10 of breakeven, using deuterium-tritium (DT) plasma at a density of 1016 cm-3, and a temperature of 10keV. We find that for a reasonable design, such a reactor can generate tens of megawatts of thermal power per cm “safely” because it is “subcritical”, and “securely” because of our choice of the fuel cycle. A systems analysis reveals that about 2% of the net electric power is needed to sustain the fusion component. Moreover, we find that it takes approximately 4 months to reach steady state due to the several steps involved in the breeding cycle.