ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Sümer Sahin, Haci Mehmet sahin, Adem Acir
Fusion Science and Technology | Volume 61 | Number 1 | January 2012 | Pages 216-221
Fusion-Fission Hybrids and Transmutation | Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems | doi.org/10.13182/FST12-A13422
Articles are hosted by Taylor and Francis Online.
The accumulated reactor grade (RG)-plutonium as nuclear waste of conventional reactors is estimated to exceed 1700 tonnes. Laser Inertial Confinement Fusion Fission Energy (LIFE) engine is considered to incinerate RG-plutonium in stockpiles. Calculations have been conducted for a constant fusion driver power of 500 MWth in S8-P3 approximation using 238-neutron groups. RG-plutonium out of the nuclear waste of LWRs is used in form of fissile carbide fuel in TRISO particles with volume fractions of 2, 3, 4, 5 and 6 %, homogenously dispersed in the Flibe coolant. Respective tritium breeding ratio (TBR) values per incident fusion neutron are calculated as TBR = 1.35, 1.52, 1.73, 2.02 and 2.47 at start-up. With the burn up of fissionable RG-Pu isotopes in the coolant, TBR decreases gradually. Similarly, blanket energy multiplications are calculated as M0 = 3.8, 5.5, 7.7, 10.8 and 15.4 at start-up, respectively. Calculations have indicated prospects of achievability of very high burn up values (> 400 000 MD.D/MT).