ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
R. W. Moir, N. N. Martovetsky, A. W. Molvik, D. D. Ryutov, T. C. Simonen
Fusion Science and Technology | Volume 61 | Number 1 | January 2012 | Pages 206-215
Fusion-Fission Hybrids and Transmutation | Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems | doi.org/10.13182/FST12-A13421
Articles are hosted by Taylor and Francis Online.
Early application of the simple axisymmetric mirror, requiring intermediate performance between a neutron source for materials testing Q=Pfusion/Pinput ~0.05 and pure fusion Q>10, are the hybrid applications. The Axisymmetric Mirror has attractive features as a driver for a fusion-fission hybrid system: geometrical simplicity, as well as the typical mirror features of inherently steady-state operation, and natural divertors in the form of end tanks. This level of physics performance has the virtue of being low risk with only modest R&D needed; and its simplicity promises economy advantages. Operation at Q~1 allows for relatively low electron temperatures, in the range of 3 keV, for the DT injection energy ~ 80 keV from existing positive ion neutral beams designed for steady state. A simple mirror with the plasma diameter of 1 m and mirror-to-mirror length of 40 m is discussed. Simple circular steady state superconducting coils are based on 15 T technology development of the ITER central solenoid. Three groups of physics issues are presented: axial heat loss, MHD stability, and microstability of sloshing ions.Burning fission reactor wastes by fissioning transuranics in the hybrid will multiply fusion's neutron energy by a factor of ~10 or more and diminish the Q needed to overcome the cost of recirculating power for good economics to less than 2 and for minor actinides with multiplication over 50 to Q~0.2. Hybrids that obtain revenues from sale of both electricity and production of fissile fuel with fissioning blankets might need Q<2 while suppressing fissioning might be the most economical application of fusion but will require Q>4.