ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Texas-based WCS chosen to manage U.S.-generated mercury
A five-year, $17.8 million contract has been awarded to Waste Control Specialists for the long-term management and storage of elemental mercury, the Department of Energy’s Office of Environmental Management announced on November 21.
R. W. Moir, N. N. Martovetsky, A. W. Molvik, D. D. Ryutov, T. C. Simonen
Fusion Science and Technology | Volume 61 | Number 1 | January 2012 | Pages 206-215
Fusion-Fission Hybrids and Transmutation | Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems | doi.org/10.13182/FST12-A13421
Articles are hosted by Taylor and Francis Online.
Early application of the simple axisymmetric mirror, requiring intermediate performance between a neutron source for materials testing Q=Pfusion/Pinput ~0.05 and pure fusion Q>10, are the hybrid applications. The Axisymmetric Mirror has attractive features as a driver for a fusion-fission hybrid system: geometrical simplicity, as well as the typical mirror features of inherently steady-state operation, and natural divertors in the form of end tanks. This level of physics performance has the virtue of being low risk with only modest R&D needed; and its simplicity promises economy advantages. Operation at Q~1 allows for relatively low electron temperatures, in the range of 3 keV, for the DT injection energy ~ 80 keV from existing positive ion neutral beams designed for steady state. A simple mirror with the plasma diameter of 1 m and mirror-to-mirror length of 40 m is discussed. Simple circular steady state superconducting coils are based on 15 T technology development of the ITER central solenoid. Three groups of physics issues are presented: axial heat loss, MHD stability, and microstability of sloshing ions.Burning fission reactor wastes by fissioning transuranics in the hybrid will multiply fusion's neutron energy by a factor of ~10 or more and diminish the Q needed to overcome the cost of recirculating power for good economics to less than 2 and for minor actinides with multiplication over 50 to Q~0.2. Hybrids that obtain revenues from sale of both electricity and production of fissile fuel with fissioning blankets might need Q<2 while suppressing fissioning might be the most economical application of fusion but will require Q>4.