ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
George H. Miley, Bradley Boyer
Fusion Science and Technology | Volume 61 | Number 1 | January 2012 | Pages 200-205
Fusion-Fission Hybrids and Transmutation | Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems | doi.org/10.13182/FST12-A13420
Articles are hosted by Taylor and Francis Online.
Recent progress in fusion development combined with the rebirth of nuclear fission power has regenerated interest in fusion-fission hybrid reactors. Such systems could be applied to both low power research reactors for use in University and industrial research assemblies and power reactors. However most attention has been directed at D-T fusion drivers using Tokamak, ICF or various alternate confinement systems like FRCs. However, the necessity to have large devices and breed tritium in the blanket complicates the concept. Here we propose the inertial electrostatic confinement (IEC) fusion approach since it offers the advantages of simple structural, high power density and a non-Maxwellian beam dominated plasma suited for burning advanced fuels to minimize tritium involvement. The cylindrical IEC allows a small compact unit which can be inserted into fuel element slots in the fission reactor core, thus providing a compact overall system and excellent neutronic coupling. The basic physics for the IEC has been demonstrated in small-scale laboratory experiments close to levels needed for driving a subcritical assembly for use in student teaching labs. However, for use in future high power hybrids significant scale-up in source strength is required. Scale up using an external ion source (e.g. a Helicon) so the background gas pressure is minimized in the reaction zone potentially offers a route to the required neutron source strength.