ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
George H. Miley, Bradley Boyer
Fusion Science and Technology | Volume 61 | Number 1 | January 2012 | Pages 200-205
Fusion-Fission Hybrids and Transmutation | Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems | doi.org/10.13182/FST12-A13420
Articles are hosted by Taylor and Francis Online.
Recent progress in fusion development combined with the rebirth of nuclear fission power has regenerated interest in fusion-fission hybrid reactors. Such systems could be applied to both low power research reactors for use in University and industrial research assemblies and power reactors. However most attention has been directed at D-T fusion drivers using Tokamak, ICF or various alternate confinement systems like FRCs. However, the necessity to have large devices and breed tritium in the blanket complicates the concept. Here we propose the inertial electrostatic confinement (IEC) fusion approach since it offers the advantages of simple structural, high power density and a non-Maxwellian beam dominated plasma suited for burning advanced fuels to minimize tritium involvement. The cylindrical IEC allows a small compact unit which can be inserted into fuel element slots in the fission reactor core, thus providing a compact overall system and excellent neutronic coupling. The basic physics for the IEC has been demonstrated in small-scale laboratory experiments close to levels needed for driving a subcritical assembly for use in student teaching labs. However, for use in future high power hybrids significant scale-up in source strength is required. Scale up using an external ion source (e.g. a Helicon) so the background gas pressure is minimized in the reaction zone potentially offers a route to the required neutron source strength.