ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
M. Nematollahi, M. Mazhari
Fusion Science and Technology | Volume 61 | Number 1 | January 2012 | Pages 186-192
Fission | Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems | doi.org/10.13182/FST12-A13418
Articles are hosted by Taylor and Francis Online.
In this paper an attempt has been made to quantitatively determine the heat transfer contribution of the different mechanisms during the bubble collapse process in subcooled flow boiling condition.For achieving this objective, the bubble behavior was studied during the subcooled flow boiling on a vertical heating rod with upward coolant water using the results of high-speed photography obtained by Nematollahi in 1999 at Tohoku University. Subsequently, some parameters including superheated layer thickness and active nucleation sites density as well as bubble parameter such as maximum diameter, life time, generation period and so forth were measured for calculation purpose of this study.In the present investigation, four procedures of superheated layer mixing, turbulence induced by bubble collapse phenomenon, latent heat transport and transferring the energy by stable micro bubbles (SMB) (remained after original bubble collapse) were considered as the bubble mechanisms during the collapse process in subcooled flow boiling. Consequently, the heat transfer contributions of the bubble mechanisms were calculated using the applied models in the literature as well as the results obtained from the bubble behavior analysis for different experimental conditions of inlet subcooled temperature, linear power density (W/cm), flow velocity as well as two heights of a heated rod.According to the calculated results, the most effective mechanism of heat transfer during the bubble collapse process was nominated to be superheated layer mixing at the moment of bubble departure with contribution ranging from 2.62% to 34.11% and average value of 9.8% to total heat flux. Also it was concluded that an average value of about 18% from total heat flux is transferred during the condensation of bubble, as it starts to shrink and finally collapses in the subcooled liquid at the end of its life in the subcooled flow boiling.