ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
B. Vezzoni, M. Salvatores, F. Gabrielli, A. Schwenk-Ferrero, V. Romanello, W. Maschek, G. Forasassi
Fusion Science and Technology | Volume 61 | Number 1 | January 2012 | Pages 167-173
Fission | Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems | doi.org/10.13182/FST12-A13415
Articles are hosted by Taylor and Francis Online.
In order to investigate the impact of nuclear energy introduction in a country with a fossil fuel based energy mix, several scenarios have been compared in terms of fuel cycle needs (resources and infrastructure) and wastes produced.As case study, the Italian situation (represented by ca. 300 TWhe-y of electricity needs in 2007 and by no nuclear energy production at present) has been selected. However, the obtained results could be extrapolated to other countries by means of scale factors.For the reference scenario, the introduction of Gen.III+ Light Water Reactors and once-through fuel cycle has been considered. Under the hypothesis that only the plutonium produced in the country will be available and used for a possible transition to a fast fleet, the introduction of different types of fast reactors (a 600 MWe lead-cooled and two 1500 MWe sodium-cooled systems with different breeding characteristics) and of a more sustainable fuel cycle (closed or partially closed) have been compared. The adoption of fast systems enables to reduce of 50% the uranium consumption and to favorably impact the cycle back-end by reducing the Pu inventory in the cycle, and by reducing the long term waste radiotoxicity and heat load in a repository.A parametric study has been carried out in order to deal with the systematic uncertainties connected to scenario investigations.