ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
B. Vezzoni et al.
Fusion Science and Technology | Volume 61 | Number 1 | January 2012 | Pages 155-160
Fission | Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems | doi.org/10.13182/FST12-A13413
Articles are hosted by Taylor and Francis Online.
Traditionally the analysis of the evolution of severe core disruptive accidents (CDA) is broken down into different phases. This is mainly done for a better focussing on the key phenomena of the accident phase and also allows the application of specific codes for the analysis. In the current paper we mainly deal with the initiating phase and the transition phase of an accident as the ULOF (unprotected loss of flow). The key phenomenon of the initiating phase is the start of boiling and the development of voiding; key phenomena of the transition phase are the progression of core melting and the occurence of recriticalities by fuel compaction. The first level of optimizing safety is oriented to the initiating phase by reducing the positive void worth in order to avoid that a ULOF accident would enter a severe development.If accident prevention is not achieved the transition phase, characterized by a progressive core degradation leading to the occurrence of recriticalities, can be mitigated by dedicated features that enhance and guarantee a sufficient and timely fuel discharge - e.g. by a controlled material relocation (CMR) - and influence and `brake'; the recriticality path.In the paper both phases are analyzed. The results presented are in agreement with the activities performed within the European Collaborative CP-ESFR project.