ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Texas-based WCS chosen to manage U.S.-generated mercury
A five-year, $17.8 million contract has been awarded to Waste Control Specialists for the long-term management and storage of elemental mercury, the Department of Energy’s Office of Environmental Management announced on November 21.
B. Vezzoni et al.
Fusion Science and Technology | Volume 61 | Number 1 | January 2012 | Pages 155-160
Fission | Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems | doi.org/10.13182/FST12-A13413
Articles are hosted by Taylor and Francis Online.
Traditionally the analysis of the evolution of severe core disruptive accidents (CDA) is broken down into different phases. This is mainly done for a better focussing on the key phenomena of the accident phase and also allows the application of specific codes for the analysis. In the current paper we mainly deal with the initiating phase and the transition phase of an accident as the ULOF (unprotected loss of flow). The key phenomenon of the initiating phase is the start of boiling and the development of voiding; key phenomena of the transition phase are the progression of core melting and the occurence of recriticalities by fuel compaction. The first level of optimizing safety is oriented to the initiating phase by reducing the positive void worth in order to avoid that a ULOF accident would enter a severe development.If accident prevention is not achieved the transition phase, characterized by a progressive core degradation leading to the occurrence of recriticalities, can be mitigated by dedicated features that enhance and guarantee a sufficient and timely fuel discharge - e.g. by a controlled material relocation (CMR) - and influence and `brake'; the recriticality path.In the paper both phases are analyzed. The results presented are in agreement with the activities performed within the European Collaborative CP-ESFR project.