ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Texas-based WCS chosen to manage U.S.-generated mercury
A five-year, $17.8 million contract has been awarded to Waste Control Specialists for the long-term management and storage of elemental mercury, the Department of Energy’s Office of Environmental Management announced on November 21.
G. F. Chapline, L. F. Nakae, N. Snyderman, J. M. Verbeke, R. Wurz
Fusion Science and Technology | Volume 61 | Number 1 | January 2012 | Pages 150-154
Fission | Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems | doi.org/10.13182/FST12-A13412
Articles are hosted by Taylor and Francis Online.
Over the past few years a number of experiments have been carried out at LLNL with a scintillator array that has the ability to count individual MeV neutrons and -rays with nanosecond timing. It has been demonstrated that this array can be used to measure the statistical properties of the neutrons emitted in single fission chains. The multiple time scales over which these fission neutrons are correlated allow one to deduce quite a lot regarding the nature of the fissile assembly. In this paper we will describe how neutron correlations measured with a liquid scintillator array can be used to assay the amounts of fissile elements in reprocessed and spent nuclear fuels.