ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Steve Ployhar et al.
Fusion Science and Technology | Volume 61 | Number 1 | January 2012 | Pages 107-112
Fusion | Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems | doi.org/10.13182/FST12-A13405
Articles are hosted by Taylor and Francis Online.
ITER is an international fusion facility being built in France to demonstrate the scientific and technological feasibility of fusion power. Fusion power at ITER is generated using a Tokamak machine in which burning plasma at temperatures of 150,000,000°C is confined within a vacuum vessel by magnetic fields. The enormous amount of heat generated by the Tokamak and its auxiliary systems is removed by the cooling water systems, consisting of the Tokamak Cooling Water System (TCWS), the Component Cooling Water System (CCWS), the Chilled Water System (CHWS), and the Heat Rejection System (HRS). These systems are designed to remove an initial peak heat load of about 1100MW.ITER is an experimental facility that will operate in a cyclical fashion. High levels of fusion power will be generated during repeated plasma pulses with specified durations. Heat produced by the fusion reaction will not be used to generate electricity, but will be rejected to the environment.The cyclical nature of the ITER machine presents distinct challenges to the design of the HRS which must reject normal facility heat loads plus large, intermittent heat loads from Tokamak pulse operations, while maintaining stable and predictable cooling tower basin water temperatures to meet the needs of cooling water system clients. This paper explores these challenges to the HRS design and describes the selected solutions.