ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Steve Ployhar et al.
Fusion Science and Technology | Volume 61 | Number 1 | January 2012 | Pages 107-112
Fusion | Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems | doi.org/10.13182/FST12-A13405
Articles are hosted by Taylor and Francis Online.
ITER is an international fusion facility being built in France to demonstrate the scientific and technological feasibility of fusion power. Fusion power at ITER is generated using a Tokamak machine in which burning plasma at temperatures of 150,000,000°C is confined within a vacuum vessel by magnetic fields. The enormous amount of heat generated by the Tokamak and its auxiliary systems is removed by the cooling water systems, consisting of the Tokamak Cooling Water System (TCWS), the Component Cooling Water System (CCWS), the Chilled Water System (CHWS), and the Heat Rejection System (HRS). These systems are designed to remove an initial peak heat load of about 1100MW.ITER is an experimental facility that will operate in a cyclical fashion. High levels of fusion power will be generated during repeated plasma pulses with specified durations. Heat produced by the fusion reaction will not be used to generate electricity, but will be rejected to the environment.The cyclical nature of the ITER machine presents distinct challenges to the design of the HRS which must reject normal facility heat loads plus large, intermittent heat loads from Tokamak pulse operations, while maintaining stable and predictable cooling tower basin water temperatures to meet the needs of cooling water system clients. This paper explores these challenges to the HRS design and describes the selected solutions.