ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Steve Ployhar et al.
Fusion Science and Technology | Volume 61 | Number 1 | January 2012 | Pages 107-112
Fusion | Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems | doi.org/10.13182/FST12-A13405
Articles are hosted by Taylor and Francis Online.
ITER is an international fusion facility being built in France to demonstrate the scientific and technological feasibility of fusion power. Fusion power at ITER is generated using a Tokamak machine in which burning plasma at temperatures of 150,000,000°C is confined within a vacuum vessel by magnetic fields. The enormous amount of heat generated by the Tokamak and its auxiliary systems is removed by the cooling water systems, consisting of the Tokamak Cooling Water System (TCWS), the Component Cooling Water System (CCWS), the Chilled Water System (CHWS), and the Heat Rejection System (HRS). These systems are designed to remove an initial peak heat load of about 1100MW.ITER is an experimental facility that will operate in a cyclical fashion. High levels of fusion power will be generated during repeated plasma pulses with specified durations. Heat produced by the fusion reaction will not be used to generate electricity, but will be rejected to the environment.The cyclical nature of the ITER machine presents distinct challenges to the design of the HRS which must reject normal facility heat loads plus large, intermittent heat loads from Tokamak pulse operations, while maintaining stable and predictable cooling tower basin water temperatures to meet the needs of cooling water system clients. This paper explores these challenges to the HRS design and describes the selected solutions.