ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
F. Bombarda, B. Coppi, F. Franza, Z. S. Hartwig, G. Ramogida, M. Zucchetti
Fusion Science and Technology | Volume 61 | Number 1 | January 2012 | Pages 95-100
Fusion | Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems | doi.org/10.13182/FST12-A13403
Articles are hosted by Taylor and Francis Online.
Fusion creates more neutrons per energy released than fission or spallation, therefore DT fusion facilities have the potential to become the most intense sources of neutrons for material testing. An Ignitor-like device, that is a compact, high field, high density machine could be envisaged for this purpose making full use of the intense neutron flux that it can generate, without reaching ignition. The main features of this High Field Neutron Source Facility, which would have about 50% more volume than Ignitor, are illustrated and the R&D required in order to achieve relevant dpa quantities in the tested materials are discussed, in particular the adoption of superconducting magnet coils. Radiation damage evaluations have been performed by means of the ACAB code, showing the potential of high field, neutron-rich devices for fusion material testing. Few full-power months of operation are sufficient to obtain significant radiation damage values (in terms of dpa) of large size samples (~m3). The setup of a duty cycle for the device in order to obtain such operation times is discussed. The problem of radiation damage to the insulator of the Toroidal Field Coils has been explored. Two strategies for mitigating damage to the TF coil insulators have been demonstrated, and it is likely that both will need to be implemented to ensure the survival of the insulating material for the lifetime of the tokamak.