ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
F. Bombarda, B. Coppi, F. Franza, Z. S. Hartwig, G. Ramogida, M. Zucchetti
Fusion Science and Technology | Volume 61 | Number 1 | January 2012 | Pages 95-100
Fusion | Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems | doi.org/10.13182/FST12-A13403
Articles are hosted by Taylor and Francis Online.
Fusion creates more neutrons per energy released than fission or spallation, therefore DT fusion facilities have the potential to become the most intense sources of neutrons for material testing. An Ignitor-like device, that is a compact, high field, high density machine could be envisaged for this purpose making full use of the intense neutron flux that it can generate, without reaching ignition. The main features of this High Field Neutron Source Facility, which would have about 50% more volume than Ignitor, are illustrated and the R&D required in order to achieve relevant dpa quantities in the tested materials are discussed, in particular the adoption of superconducting magnet coils. Radiation damage evaluations have been performed by means of the ACAB code, showing the potential of high field, neutron-rich devices for fusion material testing. Few full-power months of operation are sufficient to obtain significant radiation damage values (in terms of dpa) of large size samples (~m3). The setup of a duty cycle for the device in order to obtain such operation times is discussed. The problem of radiation damage to the insulator of the Toroidal Field Coils has been explored. Two strategies for mitigating damage to the TF coil insulators have been demonstrated, and it is likely that both will need to be implemented to ensure the survival of the insulating material for the lifetime of the tokamak.