ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
A. W. Molvik, R. W. Moir, D. D. Ryutov, T. C. Simonen
Fusion Science and Technology | Volume 61 | Number 1 | January 2012 | Pages 70-76
Fusion | Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems | doi.org/10.13182/FST12-A13399
Articles are hosted by Taylor and Francis Online.
Axisymmetric mirrors can be MHD-stabilized by end losses. Neutral-beam-sustained operation to ~0.6, and Te~0.2 keV, with 5 ms 5 MW neutral beams on the Gas Dynamic Trap (GDT) has been demonstrated at the Budker Institute in Novosibirsk, Russia. Applications of this concept can reduce risks in the fusion program. A GDT-scale facility could test plasma-material interactions (PMI) at up to 400 MW/m2 and 5 s pulse duration for divertor development. Extrapolation of the GDT to a Dynamic Trap Neutron Source, DTNS, provides a DT-fusion neutron flux of 2 MW/m2 over 1 m2, at a power-plant efficiency of Q ~ 0.07. (A DTNS enables development and testing of materials and sub-component structures, for fusion power plants, MFE or IFE. A DTNS functions regardless of whether the tested components work. These developments would reduce risks for a tokamak Fusion Nuclear Science Facility (FNSF)). Further extrapolation to 0.2 Q 10 single-cell or tandem mirror yields several fusion-fission hybrid applications. Further extension to a pure-fusion axisymmetric-tandem-mirror power plant, requires Q>10. Tandem mirrors demand the use of different stabilization techniques that are not dependent on out-flowing plasma, a number of which have been proposed, and could be experimentally tested on the GDT.