ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Klaus Hesch et al.
Fusion Science and Technology | Volume 61 | Number 1 | January 2012 | Pages 64-69
Fusion | Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems | doi.org/10.13182/FST12-A13398
Articles are hosted by Taylor and Francis Online.
Complementing the efforts towards the realization of ITER, KIT is pursuing, within the overall EURATOM fusion program, a number of important long-term technology developments towards a magnetic confinement fusion power plant (FPP), taking into account the features that will distinguish such facility from ITER.To this end, structural materials on the basis of both low-activation steels and refractory metals, as well as concepts for breeding blankets and divertor designs, are being developed along with suitable manufacturing and joining technologies. In parallel, KIT contributes to the engineering design and validation phase of the International Fusion Materials Irradiation Facility (IFMIF) necessary for qualifying the materials to be used in an FPP. The specific characteristics of an FPP fuel cycle, i.e., substantial tritium quantities within huge mass flows of gases and the related tritium compatible high throughput vacuum and pumping technologies, are being translated into viable engineering approaches. High temperature superconducting magnet solutions are being developed, with a view to overall plant efficiency. In order to increase the wall-plug efficiency of plasma heating, advanced gyrotron tubes with power levels significantly beyond what is envisaged for ITER are being developed along with a frequency tunability option for efficiently counteracting plasma instabilities.