ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
ANS certificate and certification courses continue to improve
The American Nuclear Society launched its inaugural Nuclear 101 certificate course at the 2024 ANS Winter Conference and Expo in November. The five-day program, which is designed to provide participants with a robust understanding of nuclear energy and engineering, was the talk of the conference, with nearly 50 attendees from different nuclear organizations participating in the course.
J. C. Gascon, J. Hourtoule, I. Benfatto, S. Nair, J. Tao, J. Goff
Fusion Science and Technology | Volume 61 | Number 1 | January 2012 | Pages 47-51
Fusion | Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems | doi.org/10.13182/FST12-A13395
Articles are hosted by Taylor and Francis Online.
ITER is a large-scale scientific experiment (presently under construction in Southern France) to demonstrate it is possible to produce commercial energy from nuclear fusion. In order to achieve nuclear fusion, ITER plant will be directly fed from the 400 kV French National Grid. The transmission grid will be able to provide up to 500 MW for pulsed loads (power converters) as well as 120 MW for continuous loads (auxiliaries systems) with total reactive power up to 200 Mvar demand from the pulsed loads and 48 Mvar from the continuous loads.This paper describes the specific electrical engineering studies performed to ensure the required levels of availability and to reach the required global reliability and availability of ITER project.