ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
John D. Sethian, Steve Obenschain
Fusion Science and Technology | Volume 61 | Number 1 | January 2012 | Pages 41-46
Fusion | Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems | doi.org/10.13182/FST12-A13394
Articles are hosted by Taylor and Francis Online.
We are developing the science and technology underpinnings for a fusion power source based on direct drive targets and krypton fluoride (KrF) lasers. Direct drive is chosen for its simplicity in the both the target physics and target fabrication, for its capability to achieve high energy gains, and for its unique potential to use a simple evacuated reaction chamber. KrF lasers have inherent physics advantages for achieving the robust high performance needed for the energy application. Gains greater than 140 are predicted with a relatively low laser energy of 1 MJ. Gains of 200 are predicted with energies of around 2 MJ. KrF also has engineering advantages (e.g. the gas the gas medium easier to cool than solid state laser media). Credible technologies have been identified for most of the key components for a power plant using direct laser drive, including: target fabrication, injection, and tracking; the optical system; the reaction chamber; and the major subsystems. In many cases these technologies have been demonstrated in small scale tests. This paper gives an overview of the progress in all these areas, and gives a more detailed discussion on solutions for the reaction chamber (including nano-engineered first wall and magnetic intervention). Further details can be found in the references listed at the end of this paper.