ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Jean-Luc Biarrotte
Fusion Science and Technology | Volume 61 | Number 1 | January 2012 | Pages 15-20
Plenary | Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems | doi.org/10.13182/FST12-A13390
Articles are hosted by Taylor and Francis Online.
New generation high power hadron accelerators are more and more required to produce intense fluxes of secondary particles for various fields of science: radioactive ions for nuclear physics, muons and neutrinos for particle physics, and of course neutrons for many applications like condensed matter physics, solid-state physics, or irradiation tools. This paper will focus on the applications of such accelerators in support of nuclear energy, and in particular on the two following cases: the International Fusion Materials Irradiation Facility (IFMIF), which asks for a 10 MW, 40 MeV deuteron beam, and the ADS (Accelerator Driven System) application for transmutation of long-lived radioactive wastes, which typically requires a 600 MeV - 1 GeV proton beam of a few mA for demonstrators, and a few tens of mA for large industrial systems. In this respect, the status of the accelerator proposed for the European MYRRHA project will be detailed and discussed.