ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
E. A. Veshchev, L. Bertalot, S. Putvinski, M. Garcia-Munoz, S. W. Lisgo, C. S. Pitcher, R. A. Pitts, V. S. Udintsev, M. Walsh
Fusion Science and Technology | Volume 61 | Number 2 | February 2012 | Pages 172-184
Technical Paper by Monaco ITER Postdoctoral Fellows | First Joint ITER-IAEA Technical Meeting on Analysis of ITER Materials and Technologies | doi.org/10.13182/FST12-A13385
Articles are hosted by Taylor and Francis Online.
A feasibility study for a fast-ion-loss detector in ITER has been carried out. Taking into account the basic requirements for measuring magnetohydrodynamic (MHD)-induced fast-ion (fusion-born alpha particles and ions from external heating systems) losses and the harsh environments expected in ITER plasmas, a solution based on a reciprocating probe installed in an equatorial port is suggested. In agreement with previous studies, Monte Carlo simulations of alpha-particle load on the first wall in MHD quiescent plasmas indicate that the main losses will be concentrated below the midplane, in the region of blanket module (BM) 15 to BM 18. Orbit tracing and thermal analysis, including plasma photonic and particle fluxes together with nuclear heating, have been performed to estimate the most suitable measurement timing and position of the reciprocating probe, enabling the detection of escaping alpha particles with pitch angles from [approximately]0 to 85 deg. This large velocity space ensures the detection of escaping alpha particles on both passing and trapped orbits, allowing the study of the interaction between alpha particles and a rich variety of MHD instabilities.