ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
IAEA, PNNL test new uranium enrichment monitor
A uranium enrichment monitor developed by a team at Pacific Northwest National Laboratory will soon be undergoing testing for nonproliferation applications at the International Atomic Energy Agency Centre of Excellence for Safeguards and Non-Proliferation in the United Kingdom. A recent PNNL news article describes how the research team, led by nuclear physicist James Ely, who works within the lab’s National Security Directorate, developed the UF6 gas enrichment sensor (UGES) prototype for treaty verification and other purposes.
Dakshinamoorthy Sathiyamoorthy, T. Mohanty, K. Srinivas, D. Selvaraj, D. D. Thorat
Fusion Science and Technology | Volume 61 | Number 2 | February 2012 | Pages 159-166
Technical Paper | First Joint ITER-IAEA Technical Meeting on Analysis of ITER Materials and Technologies | doi.org/10.13182/FST12-A13383
Articles are hosted by Taylor and Francis Online.
High-purity beryllium in the form of spherical pebbles of size ranging from 0.2 to 2 mm are required for neutron multiplication in the test blanket module of the helium-cooled solid breeder in ITER. The pebbles should be dense and have stringent chemical composition to withstand a high-temperature and irradiation environment. Hence, the conventional method of preparing beryllium pebbles has to be modified to a novel technique such as the rotating electrode process (REP). In the present paper REP modeling, design, and selection of process parameters to control the particle size have been carried out. Based on the results on the preparation of surrogate stainless steel spherical pebbles, beryllium pebbles have been prepared by REP, and the results obtained are presented. The important parameters that affect the pebble size and production rate are found to be anode diameter, material constants, revolutions per minute, arc gap, and the cooling cover gas in the REP chamber. The pebbles once formed are kept in levitated condition in the chamber for achieving near-perfect spherical shape. This paper also focuses on beryllium pebble handling with respect to safety and industrial hygiene control as per the prescribed international standard.