ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Dakshinamoorthy Sathiyamoorthy, T. Mohanty, K. Srinivas, D. Selvaraj, D. D. Thorat
Fusion Science and Technology | Volume 61 | Number 2 | February 2012 | Pages 159-166
Technical Paper | First Joint ITER-IAEA Technical Meeting on Analysis of ITER Materials and Technologies | doi.org/10.13182/FST12-A13383
Articles are hosted by Taylor and Francis Online.
High-purity beryllium in the form of spherical pebbles of size ranging from 0.2 to 2 mm are required for neutron multiplication in the test blanket module of the helium-cooled solid breeder in ITER. The pebbles should be dense and have stringent chemical composition to withstand a high-temperature and irradiation environment. Hence, the conventional method of preparing beryllium pebbles has to be modified to a novel technique such as the rotating electrode process (REP). In the present paper REP modeling, design, and selection of process parameters to control the particle size have been carried out. Based on the results on the preparation of surrogate stainless steel spherical pebbles, beryllium pebbles have been prepared by REP, and the results obtained are presented. The important parameters that affect the pebble size and production rate are found to be anode diameter, material constants, revolutions per minute, arc gap, and the cooling cover gas in the REP chamber. The pebbles once formed are kept in levitated condition in the chamber for achieving near-perfect spherical shape. This paper also focuses on beryllium pebble handling with respect to safety and industrial hygiene control as per the prescribed international standard.