ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
Dakshinamoorthy Sathiyamoorthy, T. Mohanty, K. Srinivas, D. Selvaraj, D. D. Thorat
Fusion Science and Technology | Volume 61 | Number 2 | February 2012 | Pages 159-166
Technical Paper | First Joint ITER-IAEA Technical Meeting on Analysis of ITER Materials and Technologies | doi.org/10.13182/FST12-A13383
Articles are hosted by Taylor and Francis Online.
High-purity beryllium in the form of spherical pebbles of size ranging from 0.2 to 2 mm are required for neutron multiplication in the test blanket module of the helium-cooled solid breeder in ITER. The pebbles should be dense and have stringent chemical composition to withstand a high-temperature and irradiation environment. Hence, the conventional method of preparing beryllium pebbles has to be modified to a novel technique such as the rotating electrode process (REP). In the present paper REP modeling, design, and selection of process parameters to control the particle size have been carried out. Based on the results on the preparation of surrogate stainless steel spherical pebbles, beryllium pebbles have been prepared by REP, and the results obtained are presented. The important parameters that affect the pebble size and production rate are found to be anode diameter, material constants, revolutions per minute, arc gap, and the cooling cover gas in the REP chamber. The pebbles once formed are kept in levitated condition in the chamber for achieving near-perfect spherical shape. This paper also focuses on beryllium pebble handling with respect to safety and industrial hygiene control as per the prescribed international standard.