ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
J. W. Coenen, B. Bazylev, S. Brezinsek, V. Philipps, T. Hirai, A. Kreter, J. Linke, G. Pintsuk, G. Sergienko, A. Pospieszczyk, T. Tanabe, Y. Ueda, U. Samm, The TEXTOR Team
Fusion Science and Technology | Volume 61 | Number 2 | February 2012 | Pages 129-135
Technical Paper | First Joint ITER-IAEA Technical Meeting on Analysis of ITER Materials and Technologies | doi.org/10.13182/FST12-A13378
Articles are hosted by Taylor and Francis Online.
Behavior and characteristics of tungsten materials under impinging high heat fluxes are investigated. Experiments with inertially - not actively - cooled samples have been carried out in the plasma edge of the TEXTOR tokamak to study the changes of material properties such as grain size and abundance of voids or bubbles. In addition, the effects of electron beam impact regarding subsequent W power handling have been studied in view of future devices.The parallel heat flux at the radial position in TEXTOR impinging on the plasma-facing components (PFCs) ranges around q[parallel] [approximately] 45 MW/m2 allowing samples to be exposed at an impact angle of 35 deg to 20 to 30 MW/m2. Melt layer motion perpendicular to the magnetic field is observed following a Lorentz force originating from thermoelectric emission of the hot W sample. Up to 3 g of molten W are redistributed forming hill-like structures at the plasma-connected edge of the sample. The typical melt layer thickness is 1.0 to 1.5 mm. Those hills are, due to the changes in the local geometry, particularly susceptible to even higher heat fluxes of up to the full q[parallel]; hence, locally the temperature of W can reach up to 6000 K, and thus boiling can occur.In terms of material degradation, several aspects are considered: formation of leading edges by redistributed melt, bubble formation, and recrystallization. Bubbles are occurring in sizes between 1 and 200 m while recrystallization increases the grain size up to 1.5 mm. The power-handling capabilities are severely degraded by all those aspects. Melting of tungsten in future devices is highly unfavorable and needs to be avoided especially in light of uncontrolled transients and possible unshaped PFCs.Predamaged samples from the TEXTOR exposures have also been exposed in the JUDITH 1 facility under transient heat loads (up to [approximately]1 GW/m2, energy impact: 36 MWm-2s1/2). The samples show an unfavorable increase in the ductile-to-brittle transition temperature. In addition, surface cracks lose their directionality recrystallizing toward a more isotropic state from the manufactured monodirectional state. The increased grain size leads to a more brittle behavior under transient thermal loads with respect to crack progression.