ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
T. Watanabe, S. Masuzaki, Y. Nakamura, LHD Experimental Group, H. Hojo (20R02)
Fusion Science and Technology | Volume 51 | Number 2 | February 2007 | Pages 147-149
Technical Paper | Open Magnetic Systems for Plasma Confinement | doi.org/10.13182/FST07-A1336
Articles are hosted by Taylor and Francis Online.
Open field line region plays the key role for steady state operation of the Large Helical Device (LHD) and greatly contributes to the high-performance plasma confinement in the LHD. Chaotic field line region, produced by high magnetic shear and nonaxisymmetry of the magnetic field, is present in open field line re gion outside the last closed flux surface (LCFS) of the LHD. The chaotic field line layer can sustain ambient plasma due to the long connection length of lines of force, presence of the embedded magnetic islands and mirror confinement effect of helical ripple nature of the magnetic field. This ambient plasma plays a role of an impregnable barrier for the core plasma, which suppresses both the MHD instabilities and the cooling of the core plasma due to charge exchange processes. Slow and small periodic sweeping of magnetic axis po sition can control the deconcentration of divertor heat flux in the LHD.