ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Wenqing Wu, Yongjun Wei, Jingwen Ba, Yan Shi
Fusion Science and Technology | Volume 61 | Number 1 | January 2012 | Pages 81-85
Technical Paper | doi.org/10.13182/FST12-A13340
Articles are hosted by Taylor and Francis Online.
Protium-deuterium isotope separation and tritium enrichment experiments have been carried out under the condition of a total reflux cycle using a continuous twin-bed hydrogen isotope separation technique, i.e., a twin-bed periodically counter-current flow technique. Two beds were packed with Pd and LaNi4.7Al0.3, which show positive and inverse isotope effects, respectively. The separation efficiency was studied experimentally in terms of stoichiometry between hydrogen and adsorbents, cycles, and extraction ratio. The experimental results show that a steady distribution of hydrogen isotopes along the axial direction can be obtained within an operating period of three cycles and a 10% extraction ratio at a moderate H/Pd atomic ratio. The results of a tritium enrichment experiment carried out under optimized conditions indicate that good enrichment efficiency is possible using this method to separate a three-component gas when the extraction ratio is kept small. Since the column used in this experiment is relatively short, there is great potential for this method for meeting the requirements of large-scale operations if long columns or multi-bed combined systems are employed.