ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
T. J. Renk, P. P. Provencio, T. J. Tanaka, J. P. Blanchard, C. J. Martin, T. R. Knowles
Fusion Science and Technology | Volume 61 | Number 1 | January 2012 | Pages 57-80
Technical Paper | doi.org/10.13182/FST12-A13339
Articles are hosted by Taylor and Francis Online.
The confining walls in future fusion power plants will be subjected to an intense energetic bombardment from X-rays, ions, and neutrons. This is true for both direct-drive inertial fusion energy (IFE) and magnetic fusion energy (MFE) designs. We focus in this paper on the threat spectra presented by energetic ions. X-rays are predicted to present a less significant threat in direct-drive IFE, and neutron effects cannot be readily simulated in current experimental facilities. For the experimental results presented herein, the energetic ions are generated in the Repetitive High-Energy Pulsed Power 1 (RHEPP-1) facility at Sandia National Laboratories. Depending upon whether the ion pulses are of nitrogen (previous database) or helium (this paper), the pulse width varies from 100 ns to as much as 500 ns, respectively. While this is short compared to [approximately]500-s transient events anticipated in MFE operation, data from both IFE and MFE experiments for tungsten exposure are shown to exhibit similar fluence thresholds when thermal diffusion is taken into account by use of the heat flux parameter H = Power density × t1/2 , where t is the characteristic event time duration.Long-term exposure of tungsten to RHEPP-1 nitrogen pulses indicates that above a level of [approximately]1 Jcm-2 /pulse, polycrystalline tungsten roughens severely, the cause of which appears to be thermomechanical distress, with loosening of grains near the surface the primary result. This roughening is correlated with unacceptable mass loss. While this occurs below melting temperatures, allowing the surface to melt by raising the per-pulse fluence does not appear to be a viable approach to smoothing the surface. Oriented grain material such as ITER-specified tungsten performs significantly better than polycrystalline tungsten, but under helium exposure it appears to suffer additional surface deterioration that appears to be connected to helium pore and bubble formation at absorbed implantation levels of mid-1015 He/cm2 . This level is below previously reported levels of concern for helium retention effects and well short of required survival duration. Experiments with three-dimensional "needle" geometries, designed to increase the effective surface area for heat absorption and reduce helium implantation in depth, show promising results that need further investigation to confirm long-term survival.