ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
T. J. Renk, P. P. Provencio, T. J. Tanaka, J. P. Blanchard, C. J. Martin, T. R. Knowles
Fusion Science and Technology | Volume 61 | Number 1 | January 2012 | Pages 57-80
Technical Paper | doi.org/10.13182/FST12-A13339
Articles are hosted by Taylor and Francis Online.
The confining walls in future fusion power plants will be subjected to an intense energetic bombardment from X-rays, ions, and neutrons. This is true for both direct-drive inertial fusion energy (IFE) and magnetic fusion energy (MFE) designs. We focus in this paper on the threat spectra presented by energetic ions. X-rays are predicted to present a less significant threat in direct-drive IFE, and neutron effects cannot be readily simulated in current experimental facilities. For the experimental results presented herein, the energetic ions are generated in the Repetitive High-Energy Pulsed Power 1 (RHEPP-1) facility at Sandia National Laboratories. Depending upon whether the ion pulses are of nitrogen (previous database) or helium (this paper), the pulse width varies from 100 ns to as much as 500 ns, respectively. While this is short compared to [approximately]500-s transient events anticipated in MFE operation, data from both IFE and MFE experiments for tungsten exposure are shown to exhibit similar fluence thresholds when thermal diffusion is taken into account by use of the heat flux parameter H = Power density × t1/2 , where t is the characteristic event time duration.Long-term exposure of tungsten to RHEPP-1 nitrogen pulses indicates that above a level of [approximately]1 Jcm-2 /pulse, polycrystalline tungsten roughens severely, the cause of which appears to be thermomechanical distress, with loosening of grains near the surface the primary result. This roughening is correlated with unacceptable mass loss. While this occurs below melting temperatures, allowing the surface to melt by raising the per-pulse fluence does not appear to be a viable approach to smoothing the surface. Oriented grain material such as ITER-specified tungsten performs significantly better than polycrystalline tungsten, but under helium exposure it appears to suffer additional surface deterioration that appears to be connected to helium pore and bubble formation at absorbed implantation levels of mid-1015 He/cm2 . This level is below previously reported levels of concern for helium retention effects and well short of required survival duration. Experiments with three-dimensional "needle" geometries, designed to increase the effective surface area for heat absorption and reduce helium implantation in depth, show promising results that need further investigation to confirm long-term survival.