ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Texas-based WCS chosen to manage U.S.-generated mercury
A five-year, $17.8 million contract has been awarded to Waste Control Specialists for the long-term management and storage of elemental mercury, the Department of Energy’s Office of Environmental Management announced on November 21.
D. Testa, M. Toussaint, R. Chavan, A. Encheva, J. B. Lister, J-M. Moret, F. Sanchez
Fusion Science and Technology | Volume 61 | Number 1 | January 2012 | Pages 19-50
Technical Paper | doi.org/10.13182/FST12-A13337
Articles are hosted by Taylor and Francis Online.
The high-frequency (HF) magnetic sensors for ITER are currently based on a conventional, Mirnov-type pickup coil, with an effective area in the range 0.03 < (NA)EFF (m2) < 0.1; the sensor is required to provide measurements of magnetic instabilities with magnitude around [vertical bar]B/B[vertical bar] [approximately] 10-4 in the 10-kHz to 2-MHz frequency range. The physical, mechanical, and electrical properties of one representative ITER HF pickup coil design have been analyzed with particular attention to the manufacturing and assembly process for the winding pack, as its integrity was found to be of concern when performing a coupled electromagnetic, structural, and thermal analysis of the sensor. Three different options for the guiding grooves in that design have been tested, using copper and tungsten for the winding pack, but none of them has been convincing enough due to the likelihood of breakages of the thin grooving and of the tungsten wire itself. Hence, alternative designs still based on a conventional Mirnov-type pickup coil have been explored, and a nonconventional Mirnov-type pickup coil was produced using direct laser cutting of a Type 316 stainless steel hollow tube, avoiding the difficulties encountered during the winding operations for conventional Mirnov-type sensors. This process of manufacturing appears to be acceptable for HF magnetic sensors of Mirnov-type design in ITER, and it is recommended for future prototyping studies, as the effective area of our first prototype, (NA)EFF [approximately] 0.01 m2 , was well below the ITER requirement. The electrical characteristics and the frequency response of all these prototypes were evaluated up to 8 MHz, with the results in good agreement with model calculations. The conventional Mirnov-type prototypes behave as expected in terms of their main electrical properties and should satisfy the present measurement performance requirements. Finally, a direct measurement of the effective area of these sensors has shown that the geometrical value is a sufficiently correct estimate of its actual value at low frequencies (<10 kHz) when the winding pack closely follows the nominal shape of the coil itself.