ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
TEPCO restarts Kashiwazaki Kariwa Unit 6
Earlier today, TEPCO announced that after nearly 15 years, Unit 6 at the Kashiwazaki Kariwa nuclear power station has been restarted. Following approval from Japan’s Nuclear Regulation Authority (NRA), TEPCO withdrew the reactor’s control rods to initiate startup at 7:02 p.m. local time.
Next, the company will work with the NRA to confirm the safe operation of the plant. “We will carefully verify the integrity of each and every plant facility while suitably addressing any issues that arise and conveying information to the public during each step of the startup process,” TEPCO’s statement said.
X. Albets-Chico, H. Radhakrishnan, S. C. Kassinos
Fusion Science and Technology | Volume 61 | Number 1 | January 2012 | Pages 1-10
Technical Paper | doi.org/10.13182/FST12-A13335
Articles are hosted by Taylor and Francis Online.
This paper addresses liquid-metal flow under a strong, fringing, decreasing magnetic field in an insulating circular pipe by a full resolution of the magnetohydrodynamic (MHD) equations. The aims of the paper are first to provide a detailed description of the flow and second to perform a study of the restrictions related to the approximate numerical techniques commonly used in the nuclear fusion field, namely, the so-called core flow approximation based on asymptotic methods. Finally, a comparison between full MHD solutions obtained under conducting and insulating circular pipe walls, at similar MHD conditions, is provided. The current results show that the role of inertia is clearly more important under electrically insulating ducts because no net braking MHD forces are present in such configurations. This fact adversely affects the accuracy of asymptotic method results. From a phenomenological point of view, the effects of wall conductivity are found to be very important. For instance, when insulating walls are present, the intensity of the generated near-wall jets is three times larger than that found in conducting configurations. As a result, the shear effects and the triggering of turbulence in the downstream area are clearly enhanced.