ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
X. Albets-Chico, H. Radhakrishnan, S. C. Kassinos
Fusion Science and Technology | Volume 61 | Number 1 | January 2012 | Pages 1-10
Technical Paper | doi.org/10.13182/FST12-A13335
Articles are hosted by Taylor and Francis Online.
This paper addresses liquid-metal flow under a strong, fringing, decreasing magnetic field in an insulating circular pipe by a full resolution of the magnetohydrodynamic (MHD) equations. The aims of the paper are first to provide a detailed description of the flow and second to perform a study of the restrictions related to the approximate numerical techniques commonly used in the nuclear fusion field, namely, the so-called core flow approximation based on asymptotic methods. Finally, a comparison between full MHD solutions obtained under conducting and insulating circular pipe walls, at similar MHD conditions, is provided. The current results show that the role of inertia is clearly more important under electrically insulating ducts because no net braking MHD forces are present in such configurations. This fact adversely affects the accuracy of asymptotic method results. From a phenomenological point of view, the effects of wall conductivity are found to be very important. For instance, when insulating walls are present, the intensity of the generated near-wall jets is three times larger than that found in conducting configurations. As a result, the shear effects and the triggering of turbulence in the downstream area are clearly enhanced.