ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Georgios Tsotridis
Fusion Science and Technology | Volume 37 | Number 3 | May 2000 | Pages 185-197
Technical Paper | doi.org/10.13182/FST00-A133
Articles are hosted by Taylor and Francis Online.
Plasma-facing components (PFCs) in tokamak-type fusion reactors are subjected to intense heat loads during plasma disruptions, causing melting and evaporation of the metallic surface layer. Simultaneously, large eddy currents are induced in the PFCs, which interact with the large background magnetic field, hence producing substantial forces that have a strong influence on component integrity and lifetime and may cause surface deformations of the melt layer. The shapes of the free surface of the molten layers of pure tungsten metal that are produced under the influence of external body forces arising from electromagnetic fields were studied by using a two-dimensional transient computer program that solves the equations of motion in a two-phase system, with monotonically varying external body forces both in space and in time. It is demonstrated that external body forces, having an outward direction from the plane of the test piece, influence the free surface significantly. Results are presented for different disruption times and for a range of external body forces varying linearly in space and in time. However, it should be stated that the description of the problem and the conclusions are qualitative and represent only a first step in the study of this very complex problem.