ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Georgios Tsotridis
Fusion Science and Technology | Volume 37 | Number 3 | May 2000 | Pages 185-197
Technical Paper | doi.org/10.13182/FST00-A133
Articles are hosted by Taylor and Francis Online.
Plasma-facing components (PFCs) in tokamak-type fusion reactors are subjected to intense heat loads during plasma disruptions, causing melting and evaporation of the metallic surface layer. Simultaneously, large eddy currents are induced in the PFCs, which interact with the large background magnetic field, hence producing substantial forces that have a strong influence on component integrity and lifetime and may cause surface deformations of the melt layer. The shapes of the free surface of the molten layers of pure tungsten metal that are produced under the influence of external body forces arising from electromagnetic fields were studied by using a two-dimensional transient computer program that solves the equations of motion in a two-phase system, with monotonically varying external body forces both in space and in time. It is demonstrated that external body forces, having an outward direction from the plane of the test piece, influence the free surface significantly. Results are presented for different disruption times and for a range of external body forces varying linearly in space and in time. However, it should be stated that the description of the problem and the conclusions are qualitative and represent only a first step in the study of this very complex problem.