ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
A more open future for nuclear research
A growing number of institutional, national, and funder mandates are requiring researchers to make their published work immediately publicly accessible, through either open repositories or open access (OA) publications. In addition, both private and public funders are developing policies, such as those from the Office of Science and Technology Policy and the European Commission, that ask researchers to make publicly available at the time of publication as much of their underlying data and other materials as possible. These, combined with movement in the scientific community toward embracing open science principles (seen, for example, in the dramatic rise of preprint servers like arXiv), demonstrate a need for a different kind of publishing outlet.
A. C. England, D. K. Lee, S. G. Lee, M. Kwon, S. W. Yoon, Hanbit Team (19R03)
Fusion Science and Technology | Volume 51 | Number 2 | February 2007 | Pages 118-121
Technical Paper | Open Magnetic Systems for Plasma Confinement | doi.org/10.13182/FST07-A1329
Articles are hosted by Taylor and Francis Online.
The Hanbit magnetic mirror has a central cell, one anchor cell and one plug cell plus associated vacuum chambers. The Hanbit device has been involved in a series of experiments on stabilization of the MHD flute type mode. Earlier work showed that it was possible to stabilize the m = -1 flute type MHD instability with RF power near the cyclotron resonance by the sideband coupling process. Divertors were used previously in experiments on the TARA mirror device and the HIEI mirror device. According to Pastukhov the main stabilizing effect is compressibility. The present configuration uses just one divertor coil in one end of Hanbit and produces a left-right asymmetry in the magnetic field. One of the central cell coils with reversed current is used as the divertor coil and two adjacent coils with increased current are used to compensate for the field droop and to prevent the field lines from intercepting the bare ion cyclotron resonant heating (ICRH) antenna. The divertor strongly reduces the m=-1 instability when the null point (x-point) is sufficiently inside the vacuum tank. However, the diverted plasma is directed into a wall and the divertor cannot be used to eliminate impurities.