ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
K. Noack, A. Rogov, A. A. Ivanov, E. P. Kruglyakov (18R04)
Fusion Science and Technology | Volume 51 | Number 2 | February 2007 | Pages 65-68
Technical Paper | Open Magnetic Systems for Plasma Confinement | doi.org/10.13182/FST07-A1315
Articles are hosted by Taylor and Francis Online.
In the last decade, a great progress was made in developing projects of sub-critical fission systems dedicated to transmutation of nuclear waste. In contrast to a fission reactor, such a device is fed with neutrons from an outer source in order to sustain a steady-state power generation. The Budker Institute of Nuclear Physics has made the proposal of a powerful 14 MeV neutron source based on a gas dynamic trap (GDT). This neutron source is primarily thought as irradiation facility for fusion material research. So, the question raises, whether the GDT based neutron source could be a candidate to efficiently drive such a sub-critical system too. The contribution pursues this question using results of first neutron transport calculations. The calculations were made for a simplified model of an actinides burner, which has been developed for an international benchmark exercise performed under the auspices of the Nuclear Energy Agency (NEA) of the Organization for Economic Cooperation and Development (OECD). Important parameters of the burner are compared for two cases - when driven by a spallation or by the GDT neutron source. From this comparison some advices for further improvements of the GDT neutron source are concluded.