ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
State legislation: Delaware delving into nuclear energy possibilities
A bill that would create a nuclear energy task force in Delaware has passed the state Senate and is now being considered in the House of Representatives.
K. Noack, A. Rogov, A. A. Ivanov, E. P. Kruglyakov (18R04)
Fusion Science and Technology | Volume 51 | Number 2 | February 2007 | Pages 65-68
Technical Paper | Open Magnetic Systems for Plasma Confinement | doi.org/10.13182/FST07-A1315
Articles are hosted by Taylor and Francis Online.
In the last decade, a great progress was made in developing projects of sub-critical fission systems dedicated to transmutation of nuclear waste. In contrast to a fission reactor, such a device is fed with neutrons from an outer source in order to sustain a steady-state power generation. The Budker Institute of Nuclear Physics has made the proposal of a powerful 14 MeV neutron source based on a gas dynamic trap (GDT). This neutron source is primarily thought as irradiation facility for fusion material research. So, the question raises, whether the GDT based neutron source could be a candidate to efficiently drive such a sub-critical system too. The contribution pursues this question using results of first neutron transport calculations. The calculations were made for a simplified model of an actinides burner, which has been developed for an international benchmark exercise performed under the auspices of the Nuclear Energy Agency (NEA) of the Organization for Economic Cooperation and Development (OECD). Important parameters of the burner are compared for two cases - when driven by a spallation or by the GDT neutron source. From this comparison some advices for further improvements of the GDT neutron source are concluded.