ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
T. Kondoh, T. Hayashi, Y. Kawano, Y. Kusama, T. Sugie, M. Hirata, Y. Miura (18R03)
Fusion Science and Technology | Volume 51 | Number 2 | February 2007 | Pages 62-64
Technical Paper | Open Magnetic Systems for Plasma Confinement | doi.org/10.13182/FST07-A1314
Articles are hosted by Taylor and Francis Online.
Collective Thomson scattering (CTS) diagnostic based on a pulsed CO2 laser (wavelength 10.6 m) has been developed to establish a diagnostic method of confined -particles in burning plasmas. A high-repetition and high-energy transversely excited atmospheric (TEA) laser has been developed as a source of the CTS diagnostic. In order to obtain single-mode output, which is needed for CTS diagnostic, seed laser is injected into the cavity with unstable resonator. Pulse energy of 17 J with a repetition rate of 15 Hz has been achieved in a single-mode operation. This result gives a prospect for the CTS diagnostic on International Thermonuclear Experimental Reactor (ITER), which requires energy of 20 J with repetition rate of 40 Hz. Proof-of-principle test will be carried out in the JT-60U tokamak by using the newly developed laser. Preliminary consideration of the CTS diagnostic in the tandem mirror GAMMA 10 shows that axial profiles of ion temperature will be obtained using a circumferential collection mirror of scattered power.