ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
T. Kondoh, T. Hayashi, Y. Kawano, Y. Kusama, T. Sugie, M. Hirata, Y. Miura (18R03)
Fusion Science and Technology | Volume 51 | Number 2 | February 2007 | Pages 62-64
Technical Paper | Open Magnetic Systems for Plasma Confinement | doi.org/10.13182/FST07-A1314
Articles are hosted by Taylor and Francis Online.
Collective Thomson scattering (CTS) diagnostic based on a pulsed CO2 laser (wavelength 10.6 m) has been developed to establish a diagnostic method of confined -particles in burning plasmas. A high-repetition and high-energy transversely excited atmospheric (TEA) laser has been developed as a source of the CTS diagnostic. In order to obtain single-mode output, which is needed for CTS diagnostic, seed laser is injected into the cavity with unstable resonator. Pulse energy of 17 J with a repetition rate of 15 Hz has been achieved in a single-mode operation. This result gives a prospect for the CTS diagnostic on International Thermonuclear Experimental Reactor (ITER), which requires energy of 20 J with repetition rate of 40 Hz. Proof-of-principle test will be carried out in the JT-60U tokamak by using the newly developed laser. Preliminary consideration of the CTS diagnostic in the tandem mirror GAMMA 10 shows that axial profiles of ion temperature will be obtained using a circumferential collection mirror of scattered power.