ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
P. K. Mioduszewski, L. W. Owen, D. A. Spong, M. E. Fenstermacher, A. E. Koniges, T. D. Rognlien, M. V. Umansky, A. Grossman, H. W. Kugel
Fusion Science and Technology | Volume 51 | Number 2 | February 2007 | Pages 238-260
Technical Paper | doi.org/10.13182/FST07-A1302
Articles are hosted by Taylor and Francis Online.
Plasma boundary control in stellarators has been shown to be very effective in improving plasma performance and, accordingly, is an important element from the very beginning of the National Compact Stellarator Experiment (NCSX) design. Studies of the magnetic field topology outside the last closed magnetic surface (LCMS) indicate the possibility of many toroidal revolutions of field lines launched within a couple of centimeters of the LCMS. Field line connection lengths, typically in the order of 100 m, should be sufficient to allow for the necessary separation of divertor and separatrix temperatures. In the top and bottom of the bean-shaped cross section (toroidal angle = 0), a field expansion of >5 is observed, which will help to spread out the heat flux on limiters and divertor plates. Plasma-facing components (PFCs) will be developed systematically according to our respective understanding of the NCSX boundary; the phased PFC development will start out with a set of limiters and has the eventual goal to develop a divertor with all the benefits of impurity and neutrals control. Neutrals calculations have been started to investigate the effect of neutrals penetration at various plasma cross sections, especially at the location of = 0 deg. Advanced wall conditioning techniques, as employed in other major fusion devices, will be incorporated in the NCSX operation.