ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Tieshan Wang, Zhiguo Wang, Jingen Chen, Genming Jin, Yubo Piao
Fusion Science and Technology | Volume 37 | Number 2 | March 2000 | Pages 146-150
Technical Paper | doi.org/10.13182/FST00-A130
Articles are hosted by Taylor and Francis Online.
Charged-particle products with ~3.9-MeV energy were observed in a low-energy experiment (Ep 330 keV) with a proton bombarding a Ti2Hx target. The features of the charged-particle products were the same as those of an alpha particle. The threshold of the reaction was ~150 keV. The maximum reaction rate reached more than 105 r/s, while the proton energy and current were 324 keV and 1.2 mA, respectively. The excitation curve of this unknown reaction increased exponentially with the growth of proton energy. There is no known nuclear reaction induced by a proton that can be applied to interpret this experimental phenomenon. Some interpretations, e.g., an indirect secondary reaction and a multibody reaction model, are discussed, but the origin of this unknown nuclear reaction is still a mystery and under study.