ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Tieshan Wang, Zhiguo Wang, Jingen Chen, Genming Jin, Yubo Piao
Fusion Science and Technology | Volume 37 | Number 2 | March 2000 | Pages 146-150
Technical Paper | doi.org/10.13182/FST00-A130
Articles are hosted by Taylor and Francis Online.
Charged-particle products with ~3.9-MeV energy were observed in a low-energy experiment (Ep 330 keV) with a proton bombarding a Ti2Hx target. The features of the charged-particle products were the same as those of an alpha particle. The threshold of the reaction was ~150 keV. The maximum reaction rate reached more than 105 r/s, while the proton energy and current were 324 keV and 1.2 mA, respectively. The excitation curve of this unknown reaction increased exponentially with the growth of proton energy. There is no known nuclear reaction induced by a proton that can be applied to interpret this experimental phenomenon. Some interpretations, e.g., an indirect secondary reaction and a multibody reaction model, are discussed, but the origin of this unknown nuclear reaction is still a mystery and under study.