ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
D. R. Mikkelsen, H. Maassberg, M. C. Zarnstorff, C. D. Beidler, W. A. Houlberg, W. Kernbichler, H. Mynick, D. A. Spong, P. Strand, V. Tribaldos
Fusion Science and Technology | Volume 51 | Number 2 | February 2007 | Pages 166-180
Technical Paper | doi.org/10.13182/FST07-A1297
Articles are hosted by Taylor and Francis Online.
We explore whether the energy confinement and planned heating in the National Compact Stellarator Experiment (NCSX) are sufficient to test magnetohydrodynamic (MHD) stability limits, and whether the configuration is sufficiently quasi-axisymmetric to reduce the neoclassical ripple transport to low levels, thereby allowing tokamak-like transport. A zero-dimensional model with fixed profile shapes is related to global energy confinement scalings for stellarators and tokamaks, neoclassical transport properties are assessed with the DKES, NEO, and NCLASS codes, and a power balance code is used to predict temperature profiles. Reaching the NCSX goal of <> = 4% at low collisionality will require HISS-95 = 3, which is higher than the best achieved in present stellarators. However, this level of confinement is actually ~10% lower than that predicted by the ITER-97P tokamak L-mode scaling. By operating near the stellarator density limit, the required HISS-95 is reduced by 35%. The high degree of quasi-axisymmetry of the configuration and the self-consistent "ambipolar" electric field reduce the neoclassical ripple transport to a small fraction of the neoclassical axisymmetric transport. A combination of neoclassical and anomalous transport models produces pressure profile shapes that are within the range of those used to study the MHD stability of NCSX. We find that <> = 4% plasmas are "neoclassically accessible" and are compatible with large levels of anomalous transport in the plasma periphery.